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ABSTRACT 

 

1. Effective management of marine resources requires an understanding of the spatial distribution of 1 

biologically important communities. 2 

2. The north-western Gulf of Mexico contains diverse marine ecosystems at a large range of depths and 3 

geographic settings. To better understand the distribution of these marine habitats across large 4 

geographic areas under consideration for marine sanctuary status, presence-only predictive modelling 5 

was used. 6 

3. Results confirmed that local geographic characteristics can accurately predict the probability of 7 

occurrence for marine habitat types, and include a novel technique for assigning a single, most likely 8 

habitat in areas where multiple habitats are predicted. 9 

4. The highest resolution bathymetric data (10m) available for the region was used to develop raster 10 

layers that represent characteristics that have been shown to influence species occurrence in other 11 

settings. 12 

5. A georeferenced historical photo record collected via Remotely Operated Vehicle (ROV) was 13 

classified according to six commonly found mesophotic habitats across the 18 reefs and banks under 14 

consideration for Flower Garden Banks National Marine Sanctuary (FGBNMS) boundary expansion. 15 

6. Using maximum entropy (Maxent) modelling, the influence of local geographic characteristics on 16 

the presence of these habitats was measured and a spatial probability distribution was developed for 17 

each habitat type across the study area. 18 
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      I.  INTRODUCTION 19 

Resource management is becoming increasingly urgent as humans continue to place heavier 20 

pressure on the finite stocks of living and non-living resources. Mostly due to the limitations of 21 

common research methods, coral reef distribution known to the scientific community is primarily 22 

limited to the dense assemblages of shallow reef-building corals. However, diverse coral ecosystems 23 

exist in deep waters of continental shelves, slopes, seamounts, and ridges. These habitats contain fragile 24 

and slow-growing species of lesser-known invertebrates, some of which serve as proxies for 25 

environmental conditions over millennia (Etnoyer et al., 2018; Roberts, Wheeler, & Freiwald, 2006). 26 

Marine Protected Areas (MPAs) are established to allow marine species and their habitats to 27 

exist and reproduce without human interaction, reducing their vulnerability to exploitation and climate 28 

change (National Oceanic and Atmospheric Administration [NOAA], 2015). To aid in the identification 29 

of potentially sensitive biological communities or expansion of MPAs, resource managers need to 30 

know the spatial distribution of conservation priorities. It is not economically efficient to survey every 31 

environment with great detail, particularly those that exist in the deepest waters of the ocean. 32 

 By combining information on the observed habitat locations with spatial predictors, the spatial 33 

association between the presence of biota and local geographic characteristics can be modelled across 34 

space (Baker & Weber, 1975; Guisan & Zimmerman, 2000; Pittman, Costa, & Battista, 2009; Stolt et 35 

al., 2011). Founded on ecological niche theory, predictive habitat and species distribution modelling of 36 

mesophotic communities provides a rapid and cost effective tool for predicting large-scale distribution, 37 

the effects of human use, and environmental change (Guisan & Zimmerman, 2000; Hirzel, Helfer, & 38 

Metral, 2001; Phillips, Anderson, & Schapire, 2006; Pittman & Brown, 2011). Data for predictive 39 

modelling of biological communities may come from several sources, including imagery from 40 

exploratory Remotely Operated Vehicle (ROV) operations conducted in marine environments by 41 

various governments, private companies, and academic institutions. 42 
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This project developed an ROV-based approach to predictive habitat modelling in ocean-floor 43 

environments and evaluated its suitability and effectiveness for mesophotic environments in the 44 

Northwestern Gulf of Mexico. Specifically, the project addressed: 1) how well local geographic 45 

characteristics predict the presence of marine habitats in the north-western Gulf of Mexico; 2) given 46 

this, where are habitats predicted to occur in the region, and 3) important policy and planning 47 

implications of the results.   48 

 49 

1.1  Hypothesized Relationships between Geographic Characteristics and Habitat Types 50 

With the exception of soft bottom environments, the habitats in this study are largely 51 

characterized by the benthic taxa they contain. Recent studies have shown geographic characteristics to 52 

be statistically significant predictors of coral and algae species; it is therefore inferred that they can be 53 

used to predict occurrence of the habitats in which they thrive. For example, in applying this surrogate 54 

approach to coral habitats, scleractinian coral presence indicates coral reef or coral community habitat 55 

(depending on density), dense crustose coralline algae (CCA) cover indicates algal nodule or CCA reef 56 

(depending on morphology), and substrate inhabited by antipatharian and octocoral species indicates 57 

Deep Coral habitat (Schmahl, Hickerson, & Precht, 2008). It is also inferred that local geographic 58 

characteristics capable of influencing probability of occurrence for species (scleractinians, crustose 59 

coralline algae, antipatharians, octocorals) within one habitat (Coral Reef, Algal Nodule, Algal Reef, or 60 

Deep Coral) have a high potential to affect the probability in others. 61 

Prior research suggests likely relationships between geographic characteristics and benthic 62 

ecology in environments characterized by coral and algae species. Depth is well known to influence the 63 

growth rate of coral and algae species (Adey, 1966, 1970; Adey & Macintyre, 1973; Baker & Weber, 64 

1975; Bosellini & Ginsberg, 1971; Minnery, Rezak, & Bright, 1985; Minnery, 1990; Rezak, Bright, & 65 

McGrail, 1985). In general, habitats that are characterized by photosynthesizing organisms such as 66 
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hermatypic corals and CCA are expected to share an inverse relationship with depth, given that it limits 67 

the amount of available light needed for their progression due to refraction and turbidity caused by 68 

suspended sediments (Adey, 1966, 1970; Adey & Macintyre, 1973; Baker & Weber, 1975; Bosellini & 69 

Ginsberg, 1971; Minnery et al., 1985; Minnery, 1990; Rezak et al., 1985). Antipatharians and 70 

octocorals that characterize deep coral habitats benefit from the lack of competing, faster-growing 71 

benthic species such as CCA and need much lesser amounts of light to grow. Thus, these habitats would 72 

likely share a positive correlation with depth.  73 

 Bottom slope, rugosity, and plan curvature capture the geographic complexity of a specific area. 74 

Prior research has shown a strong correlation between these three metrics and the occurrence of hard 75 

coral species and associated fish communities (Pittman, Costa, & Battista, 2009; Wedding & 76 

Friedlander, 2008); these metrics have also been examined as predictors of species richness and 77 

abundance (Anderson et al., 2016; Lecours, Lucieer, Dolan, & Micallef, 2018; Pittman & Brown, 2011; 78 

Pittman et al., 2009; Wedding & Friedlander, 2008; Young & Carr, 2015). Thus, it was expected that all 79 

habitats characterized by high morphometric complexity would share a positive correlation with the 80 

presence of coral habitats.  81 

Aspect represents the compass direction in which a given sloping area faces. This parameter has 82 

not been well-documented to have substantial influence on the occurrence of species found within these 83 

habitats, and the results of this model were not expected to be greatly influenced by it. However, past 84 

research has shown that current velocity, a parameter that is often determined by aspect, has a direct 85 

influence on some species included in the modelled habitats (Adey, 1966, 1970; Adey & Macintyre, 86 

1973; Minnery, 1990). 87 

Soft Bottom habitats are known to occur primarily on low-lying, level geographic features in 88 

the north-western Gulf of Mexico. The sediments that make up the sea floor in these habitats are 89 

primarily terrigenous and calcareous in nature, resulting from coastal river outflows and skeletal 90 
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remains of planktonic organisms (Schmahl, Hickerson, & Precht, 2008). Given the relatively 91 

featureless characteristics of these habitats, they were expected to be found in areas with minimal local 92 

relief (rugosity), slope of slope, slope, and plan curvature. Areas with high values for these co-variables 93 

were expected to decrease the probability of Soft Bottom habitat occurrence. 94 

In line with this literature, hypotheses were made about each geographic characteristic-habitat 95 

type relationship. Table 1 defines the relationships expected to be found between each habitat and 96 

associated geographic characteristics. The relationships between these geographic characteristics and 97 

the presence of specific FGBNMS habitat types are discussed in Appendix 1.1 in more detail. 98 

 99 

 100 

II. MATERIALS AND METHODS 101 

2.1  Background: Study Site and Associated Habitat Types 102 

At present, FGBNMS protects only three of the many reefs and banks located on the edge of the 103 

continental shelf in the Gulf of Mexico: East and West Flower Garden Bank, and Stetson Bank. NOAA 104 

has proposed adding 15 underwater areas located 70-100 miles from the coastlines of Texas and 105 

Louisiana to the existing sanctuary. Should the proposed expansion into these areas be adopted, the 106 

total area would increase from 56 to 383 square miles (Figure 1). These underwater features include: 107 

Horseshoe, 28 Fathom, MacNeil, Rankin, Bright, Geyer, Elvers McGrail, Bouma, Bryant Rezak, 108 

Sidner, Sonnier, Alderdice, and Parker Bank. According to the Gulf of Mexico Ecosystem Restoration 109 

Task Force, these areas are listed as ecologically significant sites that should be protected and managed 110 

to maintain overall biological productivity and resilience (Office of National Marine Sanctuaries 111 

[ONMS], 2016). All of these areas have been the focus of exploratory ROV expeditions, which have 112 

recorded data used not only to measure species richness and abundance but also to describe bottom 113 

types via in-situ annotations.  114 
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Over the course of this research, ROV-based habitat observations have been recorded under a 115 

localized FGBNMS classification scheme. The habitat categories under this scheme include: Coral 116 

Reef, Coral Community, Algal Nodule, Algal Reef, Deep Coral, and Soft Bottom habitat – all of which 117 

refer to commonly-found ecosystems in the north-western Gulf of Mexico. These habitat descriptions 118 

are useful in communicating observations internally as well as to the general public and affiliated 119 

stakeholders in the region. Accordingly, this research primarily used this localized FGBNMS 120 

classification scheme. National-level classification schemes such as the Coastal and Marine Ecological 121 

Classification Standard (CMECS) may also be applied to FGBNMS habitats (Carollo, Allee, & 122 

Yoskowitz, 2013; Federal Geographic Data Committee, 2012; Ruby, 2017); an explanation of how the 123 

FGBNMS and CMECS scheme are inter-related can be found in the Appendix (Table A-1). 124 

 125 

2.2 Data Collection and Photo Analysis 126 

A probability distribution predicting the likelihood of occurrence for six commonly observed 127 

habitat types in the north-western Gulf of Mexico was generated using: 1) photographic ROV data 128 

collected by the National Oceanic and Atmospheric Administration’s (NOAA) Flower Garden Banks 129 

National Marine Sanctuary (FGBNMS); and 2) local geographic characteristics extracted from high- 130 

definition bathymetry data using Environmental Systems Research Institute (ESRI) ArcMap mapping 131 

software. Field data collection for this project included 16 years (2001-2016) of collaboration between 132 

FGBNMS and the University of North Carolina Wilmington - Undersea Vehicles Program (UNCW-133 

UVP). Two different models of ROV were used to collect data utilized for this model. A description of 134 

each model can be found in the Appendix (Table A-2). Approximately 7,150 geo-referenced 135 

photographs analysed by FGBNMS scientists during previous habitat classification research 136 

(Sammarco et al., 2016) were combined with the entire mesophotic photo record from FGBNMS 137 

expeditions in the Northwestern Gulf, totalling 19,514 photos. These photos were geo-referenced using 138 
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post-processing procedures that use the photos’ timestamps and information about the ROV’s speed to 139 

correct for gaps in location data from the ROV Hypack GPS (approximately 10% of photos were so 140 

corrected, introducing an additional horizontal error of up to 1.03 m) (Appendix 2.2.1).   141 

Still images from each dive were reviewed to determine their usability for qualitative analysis. 142 

If at least 50% (approximate) of the photo could be analysed for benthos, it was used in the primary 143 

data analysis for the project. Usable photos were classified according to the regional FGBNMS habitat 144 

scheme based on the qualitative analysis to detect the presence of any definitive species, as well as 145 

substrate type that characterize the habitats of interest, using Windows Photo Viewer. The defining 146 

characteristics of each habitat type were found in the guidance documents for each respective 147 

classification category (Federal Geographic Data Committee, 2012; Schmahl et al., 2008). Under the 148 

FGBNMS scheme, a photo has a classification for Biological Zone and Major Habitat (Table A-1). 149 

Each usable photo was assigned to one of the six FGBNMS habitats considered in this study; this 150 

habitat code was stored along with its latitude and longitude in a Comma Separated Value (.csv) file. 151 

These data points served as the occurrence records that Maxent used to construct the spatial probability 152 

distribution across the study area. Data points used to develop the probability distribution include 238 153 

Coral Reef, 203 Coral Community, 1,431 Algal Nodule, 4,178 Algal Reef, 4,746 Deep Coral, and 8,718 154 

Soft Bottom classifications. 155 

 156 

2.3 Bathymetric Data 157 

Digital terrain models derived from high-definition multibeam acoustic sensor data were used to 158 

quantify spatial predictors representing a range of variables of seafloor morphology. Since 2002, these 159 

bathymetric data have been collected by a coalition of FGBNMS, Bureau of Ocean Energy 160 

Management (BOEM) (formerly known as Minerals Management Service), and USGS. 161 
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Raster surfaces derived from the bathymetric data obtained for this project were projected in 162 

WGS 1984 UTM Zone 15N coordinate system. The original resolution of the bathymetry data being 163 

used for this research ranges from approximately one to eight metres. In order to account for the 164 

coarsest resolution of the original data (8m) and the error in the ROVs’ horizontal position during data 165 

collection, ESRI’s Resampling tool for ArcMap was used with a bilinear resampling technique (ESRI, 166 

2017) to standardize the resolution of each raster dataset to a 10m x 10m cell size. The 18 multibeam 167 

datasets were compiled into one single-band raster layer with 32-bit floating point pixel type using 168 

ArcMap’s Mosaic to New Raster Tool. 169 

Based on a review of the literature, depth, bottom slope, slope of slope, rugosity, plan curvature, 170 

and aspect are the characteristics most likely to predict presence of FGBNMS habitat types. These were 171 

therefore the characteristics that were used as environmental covariates to estimate habitat distribution 172 

in this study. The raster mosaic served as both the depth raster and the base raster surface from which 173 

all remaining environmental parameters for this project were calculated. Five morphometric 174 

transformations of the depth surface layer were generated in ArcMap software: 175 

• slope (maximum rate of change in the three-by-three cell neighbourhood; Slope tool 176 

with depth as input), 177 

• slope of slope (maximum rate of slope change in the three-by-three cell neighbourhood; 178 

Slope tool with slope as input), 179 

• rugosity (the secant of slope in radians, equivalent to 3D to 2D area ratio, for each grid 180 

cell; Raster Calculator tool, as described in Berry, 2007), 181 

• plan curvature (the horizontal convexity or concavity of a sloping pixel; Curvature tool), 182 

• and aspect variation (direction each grid cell faces; Aspect tool output vectorized on 0-1 183 

scales to westerly and southerly components, each evaluated independently). 184 

Following their creation, each file was converted into an ASCII grid layer, as is required by Maxent. 185 
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2.4 Maximum Entropy Modelling 186 

Habitat suitability modelling has been widely used to predict the distribution of number of 187 

deep-sea and cold-water scleratinians, octocorals, and antipatharians in order to more comprehensively 188 

understand shelf habitats and aid resource management decisions regarding their protection (Krigsman, 189 

Yoklavich, Dick, & Cochrane, 2012; Rengstorf, Yesson, Brown, Grehan, & Crame, 2013; Tazioli, Bo, 190 

Boyer, Rotinsulu, & Bravestrello, 2007; Woodby, 2009). For this project, habitat suitability was 191 

predicted using the maximum entropy estimation method, which was developed for modelling species’ 192 

geographic distributions (Elith et al., 2010; Phillips, Anderson, & Schapire, 2006; Phillips & Dudik, 193 

2008). Specifically, this modelling approach offers the most random distribution of each habitat type 194 

across the full extent of the study area consistent with the covariate values (depth, slope, slope of slope, 195 

plan curvature, rugosity, and aspect) observed at each ROV-observed sample point. This results in the 196 

least-biased estimate given the region(s) of phase space included in the available information (Jaynes, 197 

1957). Maxent uses independent variables, or covariates, from a sample record for each habitat, along 198 

with a sample of background points from an ASCII raster grid that represents a geographic region, to 199 

independently estimate a spatial probability distribution for each habitat occurrence (Elith et al., 2010; 200 

Phillips et al., 2006).  201 

 202 

2.5 Maxent Outputs 203 

2.5.1 Receiver Operating Characteristic (ROC) 204 

A major concern of ecological modelling is the accuracy of a model in predicting the presence 205 

and/or absence of some organism or habitat. Maxent allows a subset of data to be set aside for an 206 

independent accuracy assessment called the Receiver Operating Characteristic (ROC). This test refers 207 

to a measure of model accuracy in terms of its ability to correctly predict the occurrence of a given 208 

habitat type; it is a function of the proportion of error in testing the model with a random subset of data 209 
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(Deleo, 1993; Fielding & Bell, 1997). In the case of maximum entropy modelling, the ratio represents 210 

the ability of the model to identify presence relative to a completely random distribution (Phillips et al., 211 

2006). This ratio is also known as sensitivity. The area underneath this ROC curve (AUC score) is equal 212 

to the probability that a randomly chosen positive instance and a randomly chosen locality with 213 

probability equal to zero are correctly predicted by the model. 214 

2.5.2  Response Curves 215 

Maxent response curves illustrate the probability response for each habitat type as predictor 216 

values vary. Each plot is developed by creating a model using only the corresponding environmental 217 

predictor (Phillips, 2017).  The patterns represented by the curves are useful for comparative analysis 218 

between habitat types and their relative response to increasing/decreasing values of each predictor. 219 

2.5.3  Percent Contribution and Permutation Importance 220 

These metrics present the relative estimates of model contribution by each environmental 221 

predictor. The second estimate (permutation importance) is calculated by taking the presence data used 222 

for training and background samples and running a random permutation using each variable in turn. 223 

The software then records the successive drop in AUC during each permutation to determine 224 

importance as a percentage. The jackknife test of variable importance gives further insight by 225 

evaluating the relative influence of each environmental predictor independently. 226 

 The value of variable contribution or permutation importance is indicative of the degree to 227 

which the presence of each respective habitat is dependent upon each variable; a high value indicates 228 

high dependability, and vice-versa. In some cases, the relative contribution to model performance is 229 

increased or decreased substantially between variable contribution and permutation importance. A shift 230 

from a high contribution score to a substantially lower permutation score may be the result of multi-231 

collinearity among covariates (Baldwin, 2009). The permutation process of Maxent highlights these 232 
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relationships and the regularization of the model algorithm protects overall model performance from 233 

this effect (Bradie & Leung, 2016; Cruz-Cardenas, López-Mata, Villaseñor, & Ortiz, 2014). 234 

2.5.4  Spatial Probability Distributions 235 

In the final step of the modelling process, Maxent produces a spatial probability distribution for 236 

each habitat type across the study area. It builds a raster grid (.ASC) for each habitat in which each 237 

pixel represents the probability (0-1.0) for it to occur. 238 

 239 

2.6 Mapping Maxent Probabilities Using Multinomial Logit Regression 240 

For habitat prediction and management applications of the Maxent model output, it is important 241 

to illustrate the spatial distribution of each habitat type in relation to others. To do this, the probability 242 

distributions for all habitat types were combined using ArcMap raster calculator. A major challenge in 243 

combining habitat types was presented by areas where Maxent predicts more than one type of habitat to 244 

occur with probability greater than 50%; in this project, these areas were termed “transitional zones.” 245 

In order to maximize the statistical accuracy of the model, a multinomial logistic regression (MLR) 246 

analysis using both the Maxent probability distributions for each habitat (independent variables) and 247 

sample observation point data (dependent variable) was used to find which Maxent habitat type 248 

probabilities were more predictive of the habitats actually observed at the sample points (classified 249 

ROV imagery) within each transitional zone. 250 

 This allowed the development of a rule set for breaking ties in transitional zones, with the goal 251 

of assigning grid cells in these areas to a single habitat type from among the two or more habitat types 252 

predicted with high probability at that location. Table 2 contains the MLR-based guidelines on which 253 

decisions were made to assign categorical values to pixels of overlapping habitats with high 254 

probability. These distributions were combined so as to qualitatively and quantitatively realize the 255 

relative spatial relationships between the mesophotic habitats across the study area. A more 256 
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comprehensive description of the methods used to process transitional areas can be found in the 257 

Appendix 3.1.2. 258 

 259 

 260 

   III.  RESULTS 261 

3.1 AUC and Overall Model Performance 262 

The AUC scores for Coral Reef Coral Community, Algal Nodule, Algal Reef, Deep Coral, and 263 

Soft Bottom habitat were 0.988, 0.995, 0.944, 0.901, 0.876, and 0.798, respectively. These results 264 

showed that, relative to the other models, the Coral Community model performed best according to the 265 

random test sample (25%) set aside from the observation data. That is, this model correctly identified 266 

Coral Community presence 99.5% of the time. 267 

 268 

3.2 Percentage Contribution and Permutation Importance  269 

 Depth showed the strongest contribution to model gain, especially for Coral Reef habitats 270 

(Table 3). It also showed the highest permutation importance across all habitats. It is important to note 271 

that its permutation importance increased relative to variable contribution across all habitats, indicating 272 

that depth was minimally or unaffected by multicollinearity between variables in this model (Baldwin, 273 

2009).  Slope of slope substantially contributed to the model, primarily for Algal Reef and Deep Coral 274 

habitats, though its importance decreased when used as the only predictor. Slope was also a relatively 275 

important contributor to overall model performance, especially for deeper habitats, however, model 276 

gain decreased substantially in permutations using this variable alone. While rugosity appears to have 277 

had little relative influence on overall model performance, AUC scores recorded during permutations 278 

indicated an interesting shift from very low to moderate importance in model gain for Algal Reef, Deep 279 
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Coral, and Soft Bottom habitats. Using this metric for variable contribution to the model, all other 280 

variables showed minimal influence. 281 

 282 

3.3 Response Curves  283 

For depth, response curves showed that probabilities for habitats characterized by dense 284 

assemblages of light-dependent species (such as hermatypic corals and photosynthesizing algae) were 285 

higher in shallower areas, while Algal Nodule, Algal Reef, and particularly Deep Coral habitats showed 286 

peaks in probability in deeper water (Figure 2). Slope appeared to have high initial influence as it 287 

increased from zero at the low end, though its effect gradually decreased for high slope values, having 288 

either a slight negative (Coral Reef, Coral Community, and Algal Nodule) or slightly positive (Algal 289 

Reef, Deep Coral, Soft Bottom) effect on occurrence probability in this range. The curves for slope of 290 

slope and rugosity showed similar response patterns. For planform curvature, Coral Community 291 

showed lower probabilities for convex features (negative values) and higher probabilities for concave 292 

features (positive values). The probability response for planform curvature for the remaining habitats in 293 

the model all presented a relatively constant probability greater than 0.70 for convex features, with a 294 

slightly higher probability prediction for concave features, and a dip in probability to 0.40 or lower for 295 

flat features. For aspect, probabilities appeared to be slightly higher for northerly and easterly facing 296 

areas. 297 

3.4 Maps of Likely Habitat Locations 298 

As one would expect to find, Coral Reef and Coral Community habitats were estimated to occur 299 

primarily around the shallowest features of the study area; the general patterns of Algal Nodule, Algal 300 

Reef, Deep Coral, and Soft Bottom distributions appear less definitive (Figure 3). In an initial 301 

assessment of these raster surfaces, substantial overlap in the spatial distribution of high-probability 302 

(>.50) for occurrence of each habitat type were observed, with many instances in which Maxent 303 
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assigned a high probability for two, three, four and occasionally five types of habitats to occur in the 304 

same location. Table A-4 identifies all combinations of overlapping habitat types, the total area they 305 

cover, and the outcome of applying MLR-based guidelines (Table 2) for each case. Figure 3 illustrates 306 

the distribution of these overlapping areas, as well as areas in which only one habitat was predicted to 307 

occur with high confidence, throughout East Flower Garden Bank. The final map, (Figure 3c), was 308 

rendered by combining the categorical raster grid of habitat types with their respective probabilities as 309 

assigned by Maxent; the opacity of each grid cell represents the probability that said habitat occurs. 310 

Table 4 quantifies total area covered by each habitat in the study area after addressing high probability 311 

discrepancies using MLR. 312 

 313 

 314 

    IV.  DISCUSSION 315 

In general, the results showed that local geographic characteristics provided accurate metrics for 316 

predicting the occurrence of the habitats of interest; the 18 reefs and banks included in the FGBNMS 317 

Expansion Proposal were predicted to contain networks of biologically important habitats (ONMS, 318 

2016), and the results support this prediction. For each habitat, environmental predictors’ influence in 319 

the Maxent model (as measured by variable contribution, permutation importance, and jackknife tests 320 

of variable importance) was compared to that set forth in the hypotheses and the findings of existing 321 

empirical studies. The implications of the results for the hypothesized influence of each environmental 322 

variable on FGBNMS habitat classifications are summarized in Table 1. Consistent with the 323 

hypotheses, the majority of predictive environmental variables included in the model were shown to 324 

have influence on the presence of Coral Reef, Coral Community, Algal Nodule, Algal Reef, Deep 325 

Coral, and Soft Bottom habitats in the study area (Table 1 & Figure 2). 326 

 327 
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4.1 Effects of Environmental Predictors on Habitat Probability 328 

 329 

4.1.1 Coral Reef and Coral Community  330 

For Coral Reef and Coral Community habitats, the results supported the hypothesized decrease 331 

in probability with increasing depth. This was supported by the jackknife plots, which showed a large 332 

decline in model performance when depth was removed as an environmental predictor for these 333 

habitats. This observation is consistent with the relationship predicted to occur (Table 1) and 334 

conclusions of Baker and Weber (1975). Coral Reef and Coral Community are both characterized by 335 

the presence of photosynthesizing hard corals and other benthos and thus one would logically expect to 336 

find this relationship to hold true. According to the jackknife test data, the second most influential 337 

parameter for Coral Reef was slope of slope. For Coral Community, rugosity appeared to have high 338 

relative influence on habitat occurrence; however, when the permutations were performed, its relative 339 

influence decreased (Table 1). This indicated that, in the absence of other variables (primarily depth), 340 

rugosity did not have much predictive power for this habitat. The results for planform curvature also 341 

indicated that Coral Community habitat was more likely to occur on laterally convex bottom features. 342 

 343 

4.1.2 Algal Nodule and Algal Reef (CCA) 344 

In the case of running the model without depth as a predictor, a substantial decrease in model 345 

performance was observed for both these habitats. This observation is consistent with the hypothesis 346 

and findings of Adey (1966, 1970) and Minnery (1990). These studies indicate that the presence of 347 

CCA is largely controlled by available light, temperature, and grazing herbivores (parrot fish) whose 348 

distribution is limited by depth and competing organisms such as hermatypic corals. Algal Nodule 349 

habitat was also shown be significantly influenced by degree of Slope. This is speculated to be a result 350 

of the general distribution of this habitat around prominent features where sunlight still penetrates the 351 
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entire water column and waves and currents still influence the sea floor to a degree that allows the 352 

formation of nodules (Bosellini & Ginsburg, 1971; McMaster & Conover, 1966; Minnery, 1990; 353 

Rezaket al., 1985; Scoffin, Stoddart, Tudhope, & Woodroffe, 1985). For Algal Reef, slope of slope 354 

performed as the strongest environmental predictor when including all covariates in the model, while 355 

the omission of depth caused the largest decline in model performance; slope also showed substantial 356 

relative importance in predicting presence of this habitat (Table 1). 357 

 358 

4.1.3 Deep Coral 359 

Performance of the predictive model for Deep Coral declined when depth was excluded, 360 

indicating that it is a strong predictor of Deep Coral habitat. In line with this result, past research has 361 

indicated that the density of scleractinian and algal species decrease with depth, reducing competition 362 

and enabling gorgonian and antipatharian species characteristic of Deep Coral habitats to proliferate 363 

(Tazioli et al., 2007; Wagner et al., 2012). Comparatively, however, slope of slope provided the best 364 

predictive performance for this habitat in the overall model. This may be a result of reaching a 365 

minimum threshold of available light required by photosynthesizing benthos, at which point those 366 

species can no longer compete with deep coral species. Upon reaching this depth, slope of slope, a 367 

metric reflective of available hard bottom substrate and shelter, becomes the strongest predictor for the 368 

presence of characteristic benthic fauna (Pittman, Costa, & Battista, 2009). Slope was also indicated to 369 

be a strong predictor in the model, though its performance decreased substantially when used by itself. 370 

These results indicated that, in the absence of ample sunlight, bottom complexity has significant 371 

influence on the presence of deep coral habitat and the species that characterize them. This is consistent 372 

with the reported sensitivity of antipatharian (black coral) species to prevailing currents and 373 

surrounding seafloor composition as well as depth (Tazioli et al., 2007; Wagner, Luck, & Toonen, 374 

2012) and previously observed associations between slope of slope, plan curvature, and rugosity on 375 
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octocoral abundance (Pittman et al. 2009, Sammarco 2016, Woodby 2006, and Wedding, Jorgenson, 376 

Lepcyzk, & Friedlander 2019) and the relationships predicted in Table 1.  377 

 378 

4.1.4 Soft Bottom 379 

 Slope of slope, slope, and depth showed substantial influence on the presence of Soft Bottom 380 

habitat. According to the test of permutation importance, model performance decreased by 25.8% 381 

(Table 1) when slope of slope was omitted from the model. Furthermore, slope and depth appeared to 382 

have substantial predictive influence on the model for Soft Bottom habitat. In the model developed 383 

using all environmental predictors, slope of slope had the highest relative influence, although depth was 384 

a stronger predictor on its own. 385 

 386 

4.2 Conclusions 387 

 This project utilized the entirety of the ROV-derived dataset from NOAA's 16-year-long 388 

endeavour to explore and document seafloor features of the north-western Gulf of Mexico. The results 389 

suggest that Maxent modelling (as supplemented by MLR to resolve conflicting habitat predictions) is 390 

an accurate and useful tool for environmental management bodies interested in preserving the 391 

biological integrity of natural marine ecosystems. Specifically, the results of this predictive model show 392 

that depth, slope, slope of slope, rugosity, and planform curvature have significant influence on the 393 

presence of Coral Reef, Coral Community, Algal Nodule, Algal Reef, Deep Coral, and Soft Bottom 394 

habitats described by Schmahl et al. (2008). 395 

By applying this modelling approach and using logistical regression techniques to combine 396 

independent models, a series of maps for informing management decisions was created. In the context 397 

of this study, these results are particularly relevant to decisions regarding which areas of the north-398 

western Gulf of Mexico should be included in a proposed expansion of the FGBNMS. NOAA 399 

This article is protected by copyright. All rights reserved.



researchers have previously confirmed the presence of biologically important habitats and benthic 400 

species within the preferred alternative of the FGBNMS boundary expansion proposal (ONMS, 2016); 401 

the results of this empirical study suggest that these biologically important habitats are highly likely to 402 

be widespread throughout the preferred alternative region (ONMS, 2016). To best inform policy 403 

decisions related to FGBNMS boundary expansion, these habitat distribution maps should be subject to 404 

future research to refine and validate their depiction of the spatial extent of mesophotic habitats in the 405 

northwest Gulf of Mexico. Specifically, to further refine estimates of the extent of biologically 406 

important habitats on the reefs and banks in the FGBNMS preferred alternative, the results of this 407 

research should be used to target new areas for exploratory work using ROVs, which could be used to 408 

ground truth the predicted habitats’ extents. 409 

The inclusion of other critical environmental variables and verification of this and forthcoming 410 

predictive models will enhance the success of resource management efforts by NOAA and other 411 

responsible authorities. It is important to consider that the real distribution of habitats predicted by this 412 

model are not explicitly bound by the mathematically derived geographical attributes included in this 413 

model. Additionally, the environmental predictors used to develop this model are vulnerable to the 414 

inherent error of instruments used to collect data in the marine environment. To address these 415 

limitations, future research related to the predictive modelling of these and similar habitats in the north-416 

west Gulf of Mexico should consider incorporating other biological, chemical, and physical properties 417 

of the water column that have been empirically shown to influence the growth rate and survival of the 418 

benthic species that characterize them. Among these attributes are temperature, salinity, prevalent 419 

current direction and speed, nutrients (nitrogen and phosphorous), and turbidity. Built on the 420 

observations of unique mesophotic habitats and their associated local geographic characteristics, this 421 

model serves as a valid base on which to develop further predictive models with enhanced accuracy by 422 

the addition of other contributing variables. 423 
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Future studies should also test the methods employed by this research for transferability by 424 

applying them to other regions in the Gulf of Mexico and Outer Continental Shelf (OCS) areas. The 425 

results suggest that the methods may be broadly suitable for identifying areas which may contain vital 426 

benthic communities that require careful consideration in resource management decisions. The 427 

geographic features identified in this study may serve as a useful starting point in developing Maxent 428 

models for predicting occurrences of benthic habitats across other regions. Similarly, the MLR 429 

technique developed here for resolving classification conflicts in “transitional zones” (areas where 430 

multiple habitats are predicted to occur with high probability) may also be transferable to classification 431 

conflicts identified in Maxent output for other regions.  432 

When management plans for marine protected areas are based on inaccurate or incomplete 433 

assessments of benthic habitats, unforeseen environmental consequences may result, potentially 434 

contributing to the degradation of habitats and communities beyond recoverable levels. The risk of this 435 

occurring can be minimized by incorporating predictive models when developing natural resource 436 

policy. Maxent models like that developed here may serve as a cost-effective means of informing 437 

management decisions that prioritize the longevity of natural systems. They are a statistically accurate 438 

means of finding specific geographic locations where sensitive biological features are likely to occur. 439 

Accordingly, these locations and features may be spared from direct and unintended detrimental effects 440 

of resource extraction, or other similarly disruptive activities.   441 

This article is protected by copyright. All rights reserved.



ACKNOWLEDGMENTS 442 

 Many thanks to the experienced faculty at Texas A&M Galveston who provided the base of 443 

knowledge to carry out this research, especially to those who provided support throughout this project. 444 

Thank you to the boat crew and staff at FGBNMS for carrying out over a decade of data collection, 445 

maintaining organized data sets, and painstakingly analysing thousands of photographs. Sincerest 446 

gratitude goes out to the ROV technicians and pilots at UNCW's Underwater Vehicle Program; without 447 

your expertise, patience, and hard work, none of this would have been possible. 448 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This article is protected by copyright. All rights reserved.



REFERENCES 449 
 450 
 451 

Adey, W. H. (1966). Distribution of saxicolous crustose corallines in the northwestern North 452 
 Atlantic. Journal of Phycology, 2, 49–54. 453 
 454 
Adey, W. H. (1970). The effects of light and temperature on growth rates in boreal‐subarctic 455 
 crustose corallines. Journal of Phycology, 6, 269–276. 456 
 457 
Adey, W. H., & Macintyre, I. G. (1973). Crustose coralline algae: A re-evaluation in the geological 458 
 sciences. GSA Bulletin, 84, 883–904. 459 
 460 
Anderson, O.F., Guinotte, J.M., Rowden, A.A., Tracey, D.M., Mackay, K.A. and Clark, M.R., 2016. 461 
 Habitat suitability models for predicting the occurrence of vulnerable marine ecosystems in the 462 
 seas around New Zealand. Deep Sea Research Part I: Oceanographic Research Papers, 115, 463 
 265-292. 464 
 465 
Baker, P. A., & Weber, J. N. (1975). Coral growth rate: Variation with depth. Earth and Planetary 466 
 Science Letters, 27, 57–61. 467 
 468 
Baldwin, A. R. (2009). Use of maximum entropy modeling in wildlife research. Entropy, 11, 854-866. 469 
 470 
Bosellini, A., & Ginsburg, R. N. (1971). Form and internal structure of recent algal nodules 471 
 (Rhodolites) from Bermuda. The Journal of Geology, 79, 669–682. 472 
 473 
Bradie J., & Leung, B. (2016). A quantitative synthesis of the importance of variables used in 474 
 Maxent species distribution models. Journal of Biogeography, 44, 1344–1361. 475 
 476 
Brooke, S., & Schroeder, W.W. (2007). State of deep coral ecosystems in the Gulf of Mexico 477 

 region: Texas to the Florida Straits. In State of Deep Coral Ecosystems in the Gulf of Mexico    478 
Region pp. 217-306. 479 

 480 
Carollo, C., Allee, R. J., & Yoskowitz, D. W. (2013). Linking the Coastal and Marine Ecological 481 
 Classification Standard (CMECS) to ecosystem services: An application to the US Gulf of 482 
 Mexico. International Journal of Biodiversity Science, Ecosystem Services & Management, 483 
 9, 249–256. 484 
 485 
Cruz-Cárdenas, G., López-Mata, L., Villaseñor, J. L., & Ortiz, E. (2014). Potential species 486 
 distribution modeling and the use of principal component analysis as predictor variables. 487 
 Revista Mexicana de Biodiversidad, 85, 189–199. 488 
 489 
Deleo, J. (1993). Receiver operating characteristic laboratory (ROCLAB): Software for developing 490 
 decision strategies that account for uncertainty. 491 
 492 
Elith J., Phillips S. J., Hastie, T., Dudík M., Chee Yung E., & Yates C. J. (2010). A statistical 493 
 explanation of Maxent for ecologists. Diversity and Distributions, 17, 43–57. 494 
 495 

This article is protected by copyright. All rights reserved.



 496 
Etnoyer, P. J., Wagner, D., Fowle, H. A., Poti, M., Kinlan, B., Georgian, S. E., & Cordes, E. E. 497 
 (2018). Models of habitat suitability, size, and age-class structure for the deep-sea black coral 498 
 Leiopathes glaberrima in the Gulf of Mexico. Results of Telepresence-Enabled 499 
 Oceanographic Exploration, 150, 218–228. 500 
 501 
Federal Geographic Data Committee. (2012). Coastal and Marine Ecological Classification 502 
 Standard. Marine and Coastal Spatial Data Subcommittee, Federal Geographic Data 503 
 Committee. 504 
 505 
Fielding, A. H., & Bell, J. F. (1997). A review of methods for the assessment of prediction errors in 506 
 conservation presence/absence models. Environmental Conservation, 24, 38–49. 507 
 508 
Guisan, A., & Zimmermann, N. E. (2000). Predictive habitat distribution models in ecology. 509 
 Ecological Modelling, 135, 147–186. 510 
 511 
Hirzel, A. H., Helfer, V., & Metral, F. (2001). Assessing habitat-suitability models with a virtual 512 
 species. Ecological Modelling, 145, 111–121. 513 
 514 
Jaynes, E. T. (1957). Information theory and statistical mechanics. The Physical Review, 106, 620–  515 
 630. 516 
 517 
Krigsman L. M., Yoklavich M. M., Dick E. J., & Cochrane G. R. (2012). Models and maps: 518 
 predicting the distribution of corals and other benthic macro‐invertebrates in shelf habitats. 519 
 Ecosphere, 3, Art. 3. 520 
 521 
McMaster, R. L., & Conover, J. T. (1966). Recent algal stromatolites from the Canary Islands. The 522 
 Journal of Geology, 74, 647–652. 523 
 524 
Minnery, G. A., Rezak, R., & Bright, T. J. (1985). Depth zonation and growth form of crustose 525 
 coralline algae: Flower Garden Banks, Northwestern Gulf of Mexico. 526 
 527 
Minnery, G. A. (1990). Crustose Coralline Algae from the Flower Garden Banks, Northwestern Gulf 528 
 of Mexico: Controls on distribution and growth morphology. SEPM Journal of Sedimentary 529 
 Research, Vol. 60. 530 
 531 
Office of National Marine Sanctuaries [ONMS]. (2016). Flower Garden Banks National Marine 532 
 Sanctuary Expansion draft environmental impact statement. U.S. Department of Commerce, 533 
 National Oceanic and Atmospheric Administration, Office of National Marine Sanctuaries, 534 
 Silver Spring, MD. 535 
 536 
Phillips, S. J. (2017). A brief tutorial on Maxent. AT&T Research. 537 
 538 
Phillips, S. J., Anderson, R. P., & Schapire, R. E. (2006). Maximum entropy modeling of  species 539 
 geographic distributions. Ecological Modelling, 190, 231–259. 540 
 541 
Phillips S. J., & Dudík, M. (2008). Modeling of species distributions with Maxent: new extensions 542 
 and a comprehensive evaluation. Ecography, 31, 161–175. 543 

This article is protected by copyright. All rights reserved.



 544 
Pittman, S. J., & Brown, K. A. (2011). Multi-scale approach for predicting fish species distributions 545 
 across coral reef seascapes. PLoS ONE, 6, e20583. 546 
 547 
Pittman, S. J., Costa, B. M., & Battista, T. A. (2009). Using lidar bathymetry and boosted  regression 548 
 trees to predict the diversity and abundance of fish and corals. Journal of Coastal Research, 549 
 Special Issue 53, 27–38. 550 
 551 
Rengstorf A. M., Yesson C., Brown C., Grehan A. J., & Crame A. (2013). High‐resolution habitat 552 
 suitability modelling can improve conservation of vulnerable marine ecosystems in the deep 553 
 sea. Journal of Biogeography, 40, 1702–1714. 554 
 555 
Rezak, R., Bright, T., & McGrail, D. (1985). Reefs and banks of the northwestern Gulf of Mexico: 556 
 Their geological, biological, and physical dynamics. Northern Gulf of Mexico Topographic 557 
 Features Monitoring and Data Synthesis, Contract No. AA851-CT1-55. 558 
 559 
Roberts, J. M., Wheeler, A. J., & Freiwald, A. (2006). Reefs of the deep: The biology and geology of 560 
 cold-water coral ecosystems. Science, 312, 543. 561 
 562 
Ruby, C. (2017). Application of coastal and marine ecological classification standard (CMECS) to 563 
 remotely operated vehicle (ROV) video data for enhanced geospatial analysis of deep sea 564 
 environments. Mississippi State University, Mississippi. 565 
 566 
Sammarco, P. W., Nuttall, M. F., Beltz, D., Horn, L., Taylor, G., Hickerson, E. L., & Schmahl, G. P. 567 
 (2016). The positive relationship between relief and species richness in mesophotic 568 
 communities on offshore banks, including geographic patterns. Environmental Geosciences, 569 
 23, 195–207. 570 
 571 
Schmahl, G. P., Hickerson, E. L., & Precht, W. F. (2008). Biology and ecology of coral reefs and  coral 572 
 communities in the flower garden banks region, northwestern Gulf of Mexico. In B. M. Riegl 573 
 & R. E. Dodge (Eds.), Coral Reefs of the USA (pp. 221–261). Dordrecht: Springer 574 
 Netherlands. 575 
 576 
Scoffin, T. P., Stoddart, D. R., Tudhope, A. W., & Woodroffe, C. (1985). Rhodoliths and coralliths of 577 
 Muri Lagoon, Rarotonga, Cook Islands. Coral Reefs, 4, 71–80. 578 
 579 
Stolt, M., Bradley, M., Turenne, J., Payne, M., Scherer, E., & Cicchetti, G., Shumchenia, E. (2011). 580 
 Mapping shallow coastal ecosystems: A case study of a Rhode Island lagoon. Journal of 581 
 Coastal Research, 27, 1–15. 582 
 583 
Tazioli, S., Bo, M., Boyer, M., Rotinsulu, H., & Bavestrello, G. (2007). Ecological observations  of 584 
 some common antipatharian corals in the marine park of Bunaken (North Sulawesi, 585 
 Indonesia). (Vol. 46). 586 
 587 
Villas Bôas, A. B., Figueiredo, M. A. de O., & Villaça, R. C. (2005). Colonization and growth of 588 
 crustose coralline algae (Corallinales, Rhodophyta) on the Rocas Atoll. Brazilian Journal of 589 
 Oceanography, 53, 147–156. 590 

This article is protected by copyright. All rights reserved.



Wagner, D., Luck, D. G., & Toonen, R. J. (2012). Chapter two - The biology and ecology of black 591 
 corals (Cnidaria: Anthozoa: Hexacorallia: Antipatharia). In M. Lesser (Ed.), Advances in 592 
 Marine Biology , 63, 67–132 593 
 594 
Wedding, L. M., & Friedlander, A. M. (2008). Determining the influence of seascape structure on 595 
 coral reef fishes in Hawaii using a geospatial approach. Marine Geodesy, 31, 246–266. 596 
 597 
Wedding, L. M., Jorgensen, S., Lepczyk, C. A., & Friedlander, A. M. (2019). Remote sensing of three-598 
 dimensional coral reef structure enhances predictive modeling of fish assemblages. 599 
 Remote Sensing in Ecology and Conservation, 5, 150–159. 600 
 601 
Woodby, D., Carlile, D., & Hulbert, L. (2009). Predictive modeling of coral distribution in the 602 
 Central Aleutian Islands, USA. Marine Ecology Progress Series, 397, 227-240. 603 
 604 
Young, M., & Carr, M.H., 2015. Application of species distribution models to explain and 605 
 predict the distribution, abundance and assemblage structure of nearshore temperate reef 606 
 fishes. Diversity and Distributions, 21, 1428-1440. 607 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This article is protected by copyright. All rights reserved.



TABLES 
 
Table 1: Predicted and Observed Influence of Covariates on Probability. This table represents the predicted relationship  

(+/-) and expected strength of co-variate influence (•) for each habitat within the model. This does not represent specific 

quantitative significance levels; "•" to "•••" represents the strength of the expected relationship. Predicted levels of influence 

for each covariate represent qualitative assessments of likely relationships based on cited literature results and the 
researchers’ in situ observations, and should not be confused with statistical significance levels.  

 

 Predicted 

/Observed 

Depth Slope Slope of 

Slope 

Rugosity Plan 

Curvature 

Aspect 

(S→N) † 

Aspect 

(W→E) † 

Coral Reef Predicted -   (•••) +    (••) +   (•••) +   (•••) +   (•••) • • 

 Observed -   (•••) +    (••) +    (••) +    (••) +    (•) • • 

Coral 

Community 

Predicted -   (•••) +    (••) +   (•••) +   (•••) +   (•••) • • 

 Observed -   (•••) +   (•••) +    (•••) +    (•••) +    (•••) • • 

Algal Nodule Predicted +  (•••) -     (••) -    (••) -    (••) -    (••) •• •• 

 Observed -   (•••) +   (•••) +    (•••) +    (•••) +    (••) • • 

Algal Reef Predicted +  (•••) +    (••) +   (•••) +   (•••) +   (•••) •• •• 

 Observed -   (•••) +   (•••) +    (•••) +    (•••) +    (••) • • 

Deep Coral Predicted +  (•••) +    (••) +   (•••) +   (•••) +   (•••) • • 

 Observed +   (••) +   (•••) +    (•••) +    (•••) +    (•••) • • 

Soft Bottom Predicted +  (•••) -     (••) -    (••) -    (••) -    (••) • • 

 Observed + (••) N/A 

(•••) 

+    (•••) N/A (•••) N/A  (••) • • 

† Specific relationships (+/-) for this variable are not included in this study. 

 
 

 

 

Table 2: Scenario Description for Outcome Decisions. 

 

 

 

Scenario Coefficient of var a ((log of 

the odds of observing a 

relative the the odds of 

observing b) 

Coefficient of var b ((log 

of the odds of observing 

b relative the the odds of 

observing a) 

Result 

1 Positive; p ≤ 0.05 Positive; p ≤ 0.05 Location assigned to 

habitat with highest 

MaxEnt probability. 

2 p ≤ 0.05; positive p ≥ 0.05 and/or negative Location assigned to 

var a. (Inverse 

situation = b) 

3 p ≥ 0.05 and/or negative p ≥ 0.05 and/or negative Habitat type 

considered transitional. 

This article is protected by copyright. All rights reserved.



 
Table 3: Variable Contribution and Permutation Importance. 
 

Variable Contribution (%) 

Habitat Depth Slope 

Slope of 

Slope Rugosity 

Plan 

Curvature 

Aspect 

(S-N) 

Aspect 

(W-E) 

Coral Reef 96.4 2.3 0.3 0.4 0.0 0.5  0.0 

Coral Community 76.0 2.3 3.6 16.9 0.1 0.2 0.3 

Algal Nodule 49.4 33.6 6.6 10.1 0.0 0.3 0.1 

Algal Reef 33.6 26.9 38.1 0.6 0.6 0.1 0.0 

Deep Coral 11.8 17.0 67.0 0.2 4.0 0.0 0.0 

Soft Bottom 28.5 30.0 38.4 0.9 0.7 0.0 0.1 

Average Contribution 49.3 18.7 25.7 4.9 0.9 0.2 0.1 

Permutation Importance 

Habitat Depth Slope 

Slope of 

Slope Rugosity 

Plan 

Curvature 

Aspect 

(S-N) 

Aspect 

(W-E) 

Coral Reef 98.5 0.0 0.0 0.8 0.0 0.6 0.0 

Coral Community 99.0 0.0 0.1 0.8 0.0 0.0 0.0 

Algal Nodule 76.1 14.8 1.5 7.3 0.0 0.1 0.1 

Algal Reef 73.8 0.5 12.6 12.5 0.5 0.1 0.0 

Deep Coral 32.2 1.8 52.2 9.5 3.2 0.1 0.1 

Soft Bottom 54.5 3.2 20.9 15.5 0.9 0.0 0.1 

Average Importance 72.4 3.4 14.5 7.7 0.8 0.2 0.1 

 

 

 

 

 

Table 4: Total Area of Habitat Coverage. Prior Area refers 
to total area prior to statistical transformation via MLR 
analysis (Prior Area) and Final Area represents high 

confidence habitat coverage by type following this 

transformation. 

 

 Habitat Type Prior Area 

(km2) 

Final Area 

(km2) 

Coral Reef 5.53 5.93 

Coral Community 0.24 0.48 

Algal Nodule 3.93 9.31 

Algal Reef 0.26 32.76 

Deep Coral 3.36 59.12 

Soft Bottom 53.93 53.93 

Transitional 102.81 6.71 
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FIGURE LEGENDS 

 608 
Figure 1: Flower Garden Banks National Marine Sanctuary and the preferred alternative 609 
boundary expansion alternative as per the Draft of the Environmental Impact Statement (DEIS) 610 
prepared by NOAA. 611 
 612 
Figure 2: Response curves. The curve represents a model using only the corresponding variable. 613 

 614 
Figure 3: Sequence of probability distributions: (a) represents the distribution of habitats across 615 
East Flower Garden Bank including four degrees of overlapping area predicted with high 616 
probability; (b) represents the resulting distribution of habitats following selection of primary 617 
habitat type via MLR, as outlined in Section 3.4; and (c) represents the final distribution of 618 
habitats with the highest probability of occurrence, mapped with opacity indicating the degree of 619 
confidence that the model has in predicting occurrence. 620 
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